DE

PNBCxxx

Laserdistanzsensoren High-Precision

Betriebsanleitung

Nur als PDF erhältlich Stand: 23.08.2022 Version: 1.5.2 www.wenglor.com

DE

Inhaltsverzeichnis

1. Änderungsverzeichnis Betriebsanleitung				
2	Allgemeines	7		
	2.1 Informationen zu dieser Anleitung	7		
	2.2 Symbolerklärungen	7		
	2.3 Haftungsheschränkung	، ع		
	2.4 Urheberschutz			
3.	Zu Ihrer Sicherheit	9		
	3.1 Bestimmungsgemäße Verwendung	9		
	3.2 Nicht bestimmungsgemäße Verwendung	9		
	3.3 Qualifikation des Personals	9		
	3.4 Modifikation von Produkten	9		
	3.5 Allgemeine Sicherheitshinweise	10		
	3.6 Laser/LED Warnhinweise	10		
	3.6.1 Warnhinweise gemäß Norm EN 60825-1:2007	10		
	3.6.2 Warnhinweise gemäß Norm EN 60825-1:2014	11		
	3.7 Zulassungen und Schutzklasse	11		
		10		
4.		12		
	4.1 Messrate	14		
	4.2 Anschlussbilder	15		
	4.3 Gehäuseabmessungen	16		
	4.4 Bedienteld	18		
	4.5 Ergänzende Produkte	18		
5.	Systemübersicht	19		
6.	Montagehinweise	20		
	6.1 Auslieferungszustand	21		
7.	Inbetriebnahme	21		
8.	Funktionsbeschreibung	22		
	8.1 Auswerteverfahren	23		
	8.1.1 Schwerpunkt (COG)	23		
	8.1.2 Flanken (Edge)	23		

W wenglor

	8.2 Messe	genauigkeit und Fehlereinflüsse	24
	8.2.1	Kalibrierprotokoll	24
	8.2.2	Oberflächenmaterial	25
	8.2.3	Oberflächenbeschädigungen auf dem Messobjekt	
	8.2.4	Fremdlicht	25
	8.2.5	Änderung der Remission	25
	8.2.6	Winkelabhängigkeit der Messungen	25
0	Finatallun	20P	26
9.	Q 1 Soitor	yen	20 28
		e Finstellungen (Website)	30
	9.3 E/A-E	instellungen (Website)	
10.	Schnittste	llenprotokoll	35
	10.1 Allger	neine Messbefehle	35
	10.1.1	Datenformat "Kontinuierliche Distanzmessung" einstellen	35
	10.1.2	Datenformat "Erweiterte kontinuierliche Messung" einstellen	35
	10.1.3	Datenformat "Peakdaten" einstellen	35
	10.1.4	Messung stoppen	35
	10.1.5	Reply-Modus	
	10.2 Senso	preinstellungen	
	10.2.1	IP-Adresse einstellen	36
	10.2.2	Adresse Subnetzmaske einstellen	
	10.2.3	Gateway-Adresse einstellen	
	10.2.4	Netzwerk-Einstellungen auf Default-Werte zurücksetzen	
	10.2.5	Auswerteverfahren einstellen	
	10.2.6	Mittelwertfilter einstellen	
	10.2.7	Ausgaberate einstellen	
	10.2.8	Messrate einstellen	
	10.2.9	Paketlänge einstellen	
	10.2.10	Regelung Laserleistung und Messrate einstellen	
	10.2.11	Schutzscheiben-Kompensation	
	10.2.12	Laserleistung einstellen	
	10.2.13	Offset einstellen	
	10.2.14	Encoder-Reset	
	10.2.15	Encoderzähler-Rechts-Shift	
	10.2.16	Laser ein-/ausschalten	40
	10.2.17	Auf Default-Werte zurücksetzen	40
	10.3 E/A-E	instellungen	40

DE

10.3.1	Analogmodus einstellen	40
10.3.2	Pin-Funktion einstellen	40
10.3.3	Minimale Intensität einstellen	41
10.3.4	Maximale Intensität einstellen	41
10.3.5	Ausgangsmodus einstellen	41
10.3.6	Ausgangsfunktion einstellen	42
10.3.7	Schaltabstand einlernen (Teach-in)	42
10.3.8	Teach-Modus einstellen	42
10.3.9	Schaltpunkt einstellen	43
10.3.10	Hysterese einstellen	43
10.3.11	Schaltreserve einstellen	44
10.3.12	Fensterbreite einstellen	44
10.3.13	Eingangslast einstellen	44
10.3.14	Eingangsfunktion einstellen	45
10.4 Abfrag	gebefehle	45
10.4.1	IP-Adresse abfragen	45
10.4.2	Adresse Subnetzmaske abfragen	45
10.4.3	Adresse Gateway abfragen	45
10.4.4	MAC-Adresse abfragen	45
10.4.5	Hardware-Version abfragen	46
10.4.6	Beschreibung abfragen	46
10.4.7	Hersteller abfragen	46
10.4.8	Bestellnummer abfragen	46
10.4.9	Seriennummer abfragen	46
10.4.10	Produktversion abfragen	46
10.4.11	Einstellung Auswerteverfahren abfragen	47
10.4.12	Mittelwertfilter abfragen	47
10.4.13	Ausgaberate abfragen	47
10.4.14	Messrate abfragen	47
10.4.15	Regelung Laserleistung und Messrate abfragen	48
10.4.16	Laserleistung abfragen	48
10.4.17	Encoder-Rechts-Shift-Einstellung abfragen	48
10.4.18	Analogmodus abfragen	48
10.4.19	Pin-Funktion abfragen	49
10.4.20	Minimale Intensität abfragen	49
10.4.21	Maximale Intensität abfragen	49
10.4.22	Ausgangsmodus abfragen	50
10.4.23	Ausgangsfunktion abfragen	50
10.4.24	Schaltabstand abfragen	50
10.4.25	Teach-Modus abfragen	50

Wenglor

	10.4.26	Hysterese abfragen	51			
	10.4.27	Schaltreserve abfragen	51			
	10.4.28	Fensterbreite abfragen	51			
	10.4.29	Eingangslast abfragen	51			
	10.4.30	Eingangsfunktion abfragen	52			
	10.4.31	Eingangsstatus abfragen	52			
	10.4.32	Ein-/Ausgangsstatus aller Ein-/Ausgänge abfragen	52			
	10.4.33	Paketlänge abfragen	52			
	10.5 Heade	er- und Datenformat	53			
	10.5.1	Kontinuierliche Distanzmessung	54			
	10.5.2	Erweiterte kontinuierliche Messung (Distanz, Intensität, Encoder)	55			
	10.5.3	Peak-Daten	56			
	10.5.4	Beschreibung der Messdaten	57			
11.	Wartungsh	ninweise	59			
12.	Umweltgerechte Entsorgung59					
13.	EU-Konformitätserklärung					

1. Änderungsverzeichnis Betriebsanleitung

Version	Datum	Beschreibung/Änderungen	Zugehörige Produkt-,Hardware- und Firmware-Version
1.0.0	26.03.2015	Erstversion der Betriebsanleitung	PNBC Produktversion: 1.0.0 PNBC Hardwareversion: 3.3.0 PNBC Firmwareversion: 3.30.6
1.1.0	05.07.2017	 Erweiterung: Tabelle Messrate Erweiterung: Anschlussbild Ethernet Aktualisierung Symbolerklärung Aktualisierung: Ergänzende Produkte Erweiterung: Systemübersicht Erweiterung: "Abgleich bei Verwendung von Schutzscheiben" Aktualisierung: Kalibrierprotokoll Aktualisierung: Website 	PNBC Produktversion: B / 1.30 PNBC Hardwareversion: 3.4.0 PNBC Firmwareversion: 3.50.1
1.2.0	24.09.2019	• Laserwarnhinweise (EN 60825-1:2014)	PNBC Produktversion: B / 1.30 PNBC Hardwareversion: 3.4.0 PNBC Firmwareversion: 3.50.1
1.2.1	29.09.2020	 Ergänzung zu Analogausgang (s. Kap. 9.3) Aktualisierung Versorgungsspannung 	PNBC Produktversion: B / 1.30 PNBC Hardwareversion: 3.5.0 PNBC Firmwareversion: 3.50.6
1.3.0	18.05.2021	 Implementierung PNBC Schnittstellenbeschreibung Erweiterung Fehlerausgang 	PNBC Produktversion: C PNBC Hardwareversion: 3.5.0 PNBC Firmwareversion: 3.50.8
1.4.0	21.07.2021	Anpassung Datenformate	PNBC Produktversion: C PNBC Hardwareversion: 3.5.0 PNBC Firmwareversion: 3.50.8
1.4.1	08.12.2021	 Anpassung der allgemeinen Informationen zu dieser Anleitung 	PNBC Produktversion: C PNBC Hardwareversion: 3.5.0 PNBC Firmwareversion: 3.50.8
1.5.0	15.06.2022	Ergänzungen in Kapitel 4	PNBC Produktversion: C PNBC Hardwareversion: 3.5.0 PNBC Firmwareversion: 3.50.8
1.5.1	01.08.2022	Symbolerklärung aktulisiert (Kapitel 4.2)	PNBC Produktversion: C PNBC Hardwareversion: 3.5.0 PNBC Firmwareversion: 3.50.8
1.5.2	23.08.2022	Anpassung Laser Warnhinweise (Kapitel 3.6)	PNBC Produktversion: C PNBC Hardwareversion: 3.5.0 PNBC Firmwareversion: 3.50.8

2. Allgemeines

2.1 Informationen zu dieser Anleitung

Diese Anleitung ermöglicht den sicheren und effizienten Umgang mit folgenden Produkten:

» PNBCxxx

- Diese Anleitung ist Teil des Produkts und muss während der gesamten Lebensdauer aufbewahrt werden.
- Die örtlichen Unfallverhütungsvorschriften sowie die nationalen Arbeitsschutzbestimmungen sind vor, während und nach der Inbetriebnahme zu beachten.
- Das Produkt unterliegt der technischen Weiterentwicklung, sodass Hinweise und Informationen in dieser Betriebsanleitung ebenfalls Änderungen unterliegen können. Die aktuelle Version finden Sie unter www.wenglor.com im Download-Bereich des Produktes.

HINWEIS!

Die Betriebsanleitung muss vor Gebrauch sorgfältig gelesen und für späteres Nachschlagen aufbewahrt werden.

2.2 Symbolerklärungen

- · Sicherheits- und Warnhinweise werden durch Symbole und Signalworte hervorgehoben.
- Nur bei Einhaltung dieser Sicherheits- und Warnhinweise ist eine sichere Nutzung des Produkts möglich.

Die Sicherheits- und Warnhinweise sind nach folgendem Prinzip aufgebaut:

SIGNALWORT Art und Quelle der Gefahr!

Mögliche Folgen bei Missachtung der Gefahr.

· Maßnahme zur Abwendung der Gefahr.

Im Folgenden werden die Bedeutung der Signalworte sowie deren Ausmaß der Gefährdung dargestellt:

 führen kann, wenn sie nicht vermieden wird.
ACHTUNG! Das Signalwort weist auf eine möglicherweise gefährliche Situation hin, die zu Sachschäden
VORSICHT! Das Signalwort bezeichnet eine Gefährdung mit einem niedrigen Risikograd, die, wenn sie nicht vermieden wird, eine geringfügige oder mäßige Verletzung zur Folge haben kann.
WARNUNG! Das Signalwort bezeichnet eine Gefährdung mit einem mittleren Risikograd, die, wenn sie nicht vermieden wird, den Tod oder eine schwere Verletzung zur Folge haben kann.
GEFAHR! Das Signalwort bezeichnet eine Gefährdung mit einem hohen Risikograd, die, wenn sie nicht vermieden wird, den Tod oder eine schwere Verletzung zur Folge hat.

HINWEIS!

Ein Hinweis hebt nützliche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb hervor.

2.3 Haftungsbeschränkung

- Das Produkt wurde unter Berücksichtigung des Stands der Technik sowie der geltenden Normen und Richtlinien entwickelt. Technische Änderungen sind vorbehalten.
- · Eine gültige Konformitätserklärung finden Sie unter www.wenglor.com im Download-Bereich des Produkts.
- Eine Haftung seitens der wenglor sensoric elektronische Geräte GmbH (nachfolgend "wenglor") ist ausgeschlossen bei:
 - » Nichtbeachtung der Betriebs- bzw. Bedienungsanleitung,
 - » ungeeignete oder unsachgemäße Verwendung des Produkts,
 - » übermäßige Beanspruchung, fehlerhafte oder nachlässige Behandlung des Produkts,
 - » fehlerhafte Montage oder Inbetriebsetzung,
 - » Einsatz von nicht ausgebildetem Personal,
 - » Verwendung nicht zugelassener Ersatzteile oder
 - » Unsachgemäßen oder nicht genehmigten Änderungen, Modifikationen oder Instandsetzungsarbeiten an den Produkten.
- Diese Betriebsanleitung enthält keine Zusicherungen von wenglor im Hinblick auf beschriebene Vorgänge oder bestimmte Produkteigenschaften.
- wenglor übernimmt keine Haftung hinsichtlich der in dieser Betriebsanleitung enthaltenen Druckfehler oder anderer Ungenauigkeiten, es sei denn, dass wenglor die Fehler nachweislich zum Zeitpunkt der Erstellung der Betriebsanleitung bekannt waren

2.4 Urheberschutz

- Der Inhalt dieser Anleitung ist urheberrechtlich geschützt.
- · Alle Rechte stehen ausschließlich der Firma wenglor zu.
- Ohne die schriftliche Zustimmung von wenglor ist die gewerbliche Vervielfältigung oder sonstige gewerbliche Verwendung der bereitgestellten Inhalte und Informationen, insbesondere von Grafiken oder Bildern, nicht gestattet.

3. Zu Ihrer Sicherheit

3.1 Bestimmungsgemäße Verwendung

Dieses wenglor-Produkt ist gemäß dem folgenden Funktionsprinzip zu verwenden:

Laserdistanzsensor High-Precision

In dieser Gruppe sind die leistungsfähigsten Sensoren zur Abstandsmessung vereint, die nach verschiedenen Prinzipien im Tastbetrieb arbeiten. Laserdistanzsensoren High-Precision sind besonders schnell, präzise oder beweisen ihre hohe Leistungsfähigkeit über große Arbeitsbereiche. Sie sind für anspruchsvolle Anwendungen bestens geeignet. Selbst schwarze und glänzende Objekte werden sicher erkannt. In ausgewählten Sensoren ist die Ethernet-Technologie integriert.

3.2 Nicht bestimmungsgemäße Verwendung

- Das Produkt ist kein Sicherheitsbauteil gemäß Maschinenrichtlinie.
- · Das Produkt ist nicht für den Einsatz in explosionsgefährdeten Bereichen geeignet.

GEFAHR!

Gefahr von Personen- oder Sachschäden bei nicht bestimmungsgemäßer Nutzung!

Die bestimmungswidrige Verwendung kann zu gefährlichen Situationen führen.

• Die Angaben zur bestimmungsgemäßen Verwendung sind zu beachten.

3.3 Qualifikation des Personals

- · Eine geeignete technische Ausbildung wird vorausgesetzt.
- Eine elektrotechnische Unterweisung im Unternehmen ist nötig.
- Das Fachpersonal benötigt (dauerhaften) Zugriff auf die Betriebsanleitung.
- · Gültige Laserschutzbedingungen sind stets zu beachten.

VORSICHT!

Gefahr von Personen- oder Sachschäden bei nicht sachgemäßer Inbetriebnahme und Wartung!

Schäden an Personal und Ausrüstung sind möglich.

• Zureichende Unterweisung und Qualifikation des Personals.

3.4 Modifikation von Produkten

VORSICHT!

Gefahr von Personen- oder Sachschäden durch Modifikation des Produktes! Schäden an Personal und Ausrüstung sind möglich. Die Missachtung kann zum Verlust der CE-Kennzeichnung und der Gewährleistung führen.

• Die Modifikation des Produktes ist nicht erlaubt.

3.5 Allgemeine Sicherheitshinweise

HINWEIS!

- Diese Anleitung ist Teil des Produkts und während der gesamten Lebensdauer des Produkts aufzubewahren.
- Im Falle von Änderungen finden Sie die jeweils aktuelle Version der Betriebsanleitung unter www.wenglor.com im Download-Bereich des Produktes.
- Die Betriebsanleitung vor Gebrauch des Produkts sorgfältig durchlesen.
- Den Sensor ist vor Verunreinigungen und mechanischen Einwirkungen zu schützen.

3.6 Laser/LED Warnhinweise

ASER CLASS EN60825-1

Laser Klasse 2 (EN 60825-1)

Normen und Sicherheitsvorschriften sind zu beachten. Die beiliegenden Laserhinweise sind anzubringen. Nicht in den Laserstrahl blicken.

VORSICHT!

Wenn andere als die hier angegebenen Bedienungs- oder Justiereinrichtungen benutzt oder andere Verfahrensweisen ausgeführt werden, kann dies zu gefährlicher Strahlungseinwirkung führen.

3.6.1 Warnhinweise gemäß Norm EN 60825-1:2007

3.6.2 Warnhinweise gemäß Norm EN 60825-1:2014

3.7 Zulassungen und Schutzklasse

HINWEIS!

Einzelne Sensortypen können keine UL Zertifizierung besitzen. Details dazu s. Datenblatt des Sensors.

4. Technische Daten

	PNBC001	PNBC002	PNBC003	PNBC004
Optisch				
Arbeitsbereich [mm]	2024	2535	4060	58108
Messbereich	4 mm	10 mm	20 mm	50 mm
Auflösung	0,06 <i>µ</i> m	0,15 μm	0,3 μm	0,8 <i>µ</i> m
Linearitätsabweichung	2 µm	5 <i>µ</i> m	10 <i>µ</i> m	25 µm
Lichtart	Laser (rot)	Laser (rot)	Laser (rot)	Laser (rot)
Wellenlänge	658 nm	658 nm	658 nm	658 nm
Lebensdauer (Tu= +25 °C)	100000 h	100000 h	100000 h	100000 h
Laser-Klasse (EN 60825-1)	2	2	2	2
Max. zul. Fremdlicht	10000 Lux	10000 Lux	10000 Lux	10000 Lux
Lichtfleckdurchmesser	<0,15 mm	<0,20 mm	<0,25 mm	<0,35 mm
Elektrisch				
Versorgungsspannung	1530 V DC	1530 V DC	1530 V DC	1530 V DC
Stromaufnahme (Ub = 24 V)	280 mA	280 mA	280 mA	280 mA
Schaltfrequenz	15 kHz	15 kHz	15 kHz	15 kHz
Ansprechzeit	<33 µs	<33 µs	<33 µs	<33 µs
Ausgaberate	1030000 /s	1030000 /s	1030000 /s	1030000 /s
Temperaturdrift	0,2 μm/K	0,5 μm/K	1 μm/K	2,5 µm/K
Temperaturbereich	-1040 °C	-1040 °C	-1040 °C	-1040 °C
Lagertemperatur	–2070 °C	–2070 °C	–2070 °C	–2070 °C
Anzahl Schaltausgänge	4	4	4	4
Spannungsabfall Schaltausg.	< 1,5 V	< 1,5 V	< 1,5 V	< 1,5 V
Schaltstrom Schaltausgang	100 mA	100 mA	100 mA	100 mA
Schalteingang Low Pegel	0,82 V	0,82 V	0,82 V	0,82 V
Schalteingang High Pegel	1,52,5 V	1,52,5 V	1,52,5 V	1,52,5 V
Schalteingang Eingangsimpedanz	> 24 kΩ *			
Stoßspannungsfestigkeit (EN 60947-1)	1 kV	1 kV	1 kV	1 kV
Öffner/Schließer umschaltbar	ја	ja	ja	ja
PNP/NPN Gegentakt	ја	ja	ja	ja
Analogausgang	010 V/420 mA	010 V/420 mA	010 V/420 mA	010 V/420 mA
Kurzschlussfest	ја	ja	ja	ja
Verpolungssicher	ја	ja	ja	ja
Überlastsicher	ја	ja	ja	ja
Teach-in-Modus	VT/FT	VT/FT	VT/FT	VT/FT
Schnittstelle	Ethernet TCP/IP	Ethernet TCP/IP	Ethernet TCP/IP	Ethernet TCP/IP
Übertragungsrate	100 Mbit/s	100 Mbit/s	100 Mbit/s	100 Mbit/s
Schutzklasse	111	111		111
Webserver	ја	ja	ja	ja

	PNBC001	PNBC002	PNBC003	PNBC004			
Mechanisch							
Einstellart	Teach-in	Teach-in	Teach-in	Teach-in			
Material Gehäuse	Aluminium	Aluminium	Aluminium	Aluminium			
Schutzart	IP67	IP67	IP67	IP67			
Anschlussart	M12 x1; 8pol.	M12 x1; 8pol.	M12 x1; 8pol.	M12 x1; 8pol.			
Anschlussart Ethernet	M12 x 1; 4pol.	M12 x 1; 4pol	M12 x 1; 4pol	M12 x 1; 4pol			
Optikabdeckung	Glas	Glas	Glas	Glas			

* nur gültig wenn Eingangslast ausgeschaltet

	PNBC005	PNBC006	PNBC007	PNBC008
Optisch				
Arbeitsbereich [mm]	90190	200400	250650	2001000
Messbereich	100 mm	200 mm	400 mm	800 mm
Auflösung	1,5 <i>µ</i> m	3,1 <i>µ</i> m	6,1 <i>µ</i> m	12,2 <i>µ</i> m
Linearitätsabweichung	50 <i>µ</i> m	100 <i>µ</i> m	200 <i>µ</i> m	375 μm
Lichtart	Laser (rot)	Laser (rot)	Laser (rot)	Laser (rot)
Wellenlänge	658 nm	658 nm	658 nm	658 nm
Lebensdauer (Tu= +25 °C)	100000 h	100000 h	100000 h	100000 h
Laser-Klasse (EN 60825-1)	2	2	2	2
Max. zul. Fremdlicht	10000 Lux	10000 Lux	10000 Lux	10000 Lux
Lichtfleckdurchmesser	<0,75 mm	<0,90 mm	<1,20 mm	<1,60 mm
Elektrisch				
Versorgungsspannung	1530 V DC	1530 V DC	1530 V DC	1530 V DC
Stromaufnahme (Ub = 24 V)	280 mA	280 mA	280 mA	280 mA
Schaltfrequenz	15 kHz	15 kHz	15 kHz	15 kHz
Ansprechzeit	<33 µs	<33 µs	<33 µs	<33 µs
Ausgaberate	1030000 /s	1030000 /s	1030000 /s	1030000 /s
Temperaturdrift	5 µm/K	10 <i>µ</i> m/K	20 µm/K	37,5 <i>µ</i> m/K
Temperaturbereich	-1040 °C	-1040 °C	-1040 °C	–1040 °C
Lagertemperatur	–2070 °C	–2070 °C	–2070 °C	-–2070 °C
Anzahl Schaltausgänge	4	4	4	4
Spannungsabfall Schaltausg.	< 1,5 V	< 1,5 V	< 1,5 V	< 1,5 V
Schaltstrom Schaltausgang	100 mA	100 mA	100 mA	100 mA
Schalteingang Low Pegel	0,82 V	0,82 V	0,82 V	0,82 V
Schalteingang High Pegel	1,52,5 V	1,52,5 V	1,52,5 V	1,52,5 V
Schalteingang Eingangsimpedanz	> 24 kΩ *	> 24 kΩ *	> 24 kΩ *	> 24 kΩ *
Stoßspannungsfestigkeit (EN 60947-1)	1 kV	1 kV	1 kV	1 kV
Öffner/Schließer umschaltbar	ja	ја	ja	ја
PNP/NPN Gegentakt	ja	ја	ја	ја

	PNBC005	PNBC006	PNBC007	PNBC008
Analogausgang	010 V/420 mA	010V/420mA	010V/420mA	010V/420mA
Kurzschlussfest	ja	ja	ja	ja
Verpolungssicher	ja	ja	ja	ja
Überlastsicher	ja	ja	ja	ja
Teach-in-Modus	VT/FT	VT/FT	VT/FT	VT/FT
Schnittstelle	Ethernet TCP/IP	Ethernet TCP/IP	Ethernet TCP/IP	Ethernet TCP/IP
Übertragungsrate	100 Mbit/s	100 Mbit/s	100 Mbit/s	100 Mbit/s
Schutzklasse	III	III	III	Ш
Webserver	ja	ja	ja	ja
Mechanisch				
Einstellart	Teach-in	Teach-in	Teach-in	Teach-in
Material Gehäuse	Aluminium	Aluminium	Aluminium	Aluminium
Schutzart	IP67	IP67	IP67	IP67
Anschlussart	M12 x1; 8pol.	M12 x1; 8pol.	M12 x1; 8pol.	M12 x1; 8pol.
Anschlussart Ethernet	M12 x 1; 4pol			
Optikabdeckung	Glas	Glas	Glas	Glas

* nur gültig wenn Eingangslast ausgeschaltet

4.1 Messrate

Ermittlung der Messrate auf unterschiedlichen Oberflächen bei einem Auftreffwinkel von 90°:

	PNBC001	PNBC002	PNBC003	PNBC004
Objektfarbe				
weiß	30 kHz	30 kHz	30 kHz	30 kHz
grau	30 kHz	30 kHz	30 kHz	30 kHz
schwarz	1 kHz	27 kHz	27 kHz	12 kHz

	PNBC005	PNBC006	PNBC007	PNBC008
Objektfarbe				
weiß	30 kHz	30 kHz	25 kHz	25 kHz
grau	30 kHz	30 kHz	20 kHz	18 kHz
schwarz	12 kHz	10 kHz	6 kHz	5 kHz

Werte gemessen auf OPTEKA Digital Color & White Balance Grey Card Set Remissionsgrad: weiß: 90%

weiß: 90% grau: 18% schwarz: 6%

HINWEIS!

Es handelt sich um typische Messwerte, die je nach Oberflächenbeschaffenheit und Auftreffwinkel variieren können.

W wenglor

4.2 Anschlussbilder

134

Symbolerklärung

0,	iniariarig				
+	Versorgungsspannung +	nc	Nicht angeschlossen	ENBRS422	Encoder B/B (TTL)
-	Versorgungsspannung 0 V	U	Testeingang	ENA	Encoder A
~	Versorgungsspannung (Wechselspannung)	Ũ	Testeingang invertiert	ENв	Encoder B
A	Schaltausgang Schließer (NO)	W	Triggereingang	Amin	Digitalausgang MIN
Ā	Schaltausgang Öffner (NC)	W-	Bezugsmasse/Triggereingang	Amax	Digitalausgang MAX
V	Verschmutzungs-/Fehlerausgang (NO)	0	Analogausgang	Аок	Digitalausgang OK
V	Verschmutzungs-/Fehlerausgang (NC)	O-	Bezugsmasse/Analogausgang	SY In	Synchronisation In
E	Eingang analog oder digital	BZ	Blockabzug	SY OUT	Synchronisation OUT
Т	Teach-in-Eingang	Amv	Ausgang Magnetventil/Motor	Olt	Lichtstärkeausgang
Z	Zeitverzögerung (Aktivierung)	а	Ausgang Ventilsteuerung +	M	Wartung
S	Schirm	b	Ausgang Ventilsteuerung 0 V	rsv	Reserviert
RxD	Schnittstelle Empfangsleitung	SY	Synchronisation	Adernfar	ben nach IEC 60757
TxD	Schnittstelle Sendeleitung	SY-	Bezugsmasse/Synchronisation	BK	schwarz
RDY	Bereit	E+	Empfängerleitung	BN	braun
GND	Masse	S+	Sendeleitung	RD	rot
CL	Takt	+	Erdung	OG	orange
E/A	Eingang/Ausgang programmierbar	SnR	Schaltabstandsreduzierung	YE	gelb
\odot	IO-Link	Rx+/-	Ethernet Empfangsleitung	GN	grün
PoE	Power over Ethernet	Tx+/-	Ethernet Sendeleitung	BU	blau
IN	Sicherheitseingang	Bus	Schnittstellen-Bus A(+)/B(-)	VT	violett
OSSD	Sicherheitsausgang	La	Sendelicht abschaltbar	GY	grau
Signal	Signalausgang	Mag	Magnetansteuerung	WH	weiß
BI_D+/-	Ethernet Gigabit bidirekt. Datenleitung (A-D)	RES	Bestätigungseingang	PK	rosa
ENo RS422	Encoder 0-Impuls 0/0 (TTL)	EDM	Schützkontrolle	GNYE	grüngelb
PT	Platin-Messwiderstand	ENARS422	Encoder A/Ā (TTL)		

4.3 Gehäuseabmessungen

PNBC001

- 1 = Sendediode
- 2 = Empfangsdiode
- 3 = Auflagefläche mit M4 beidseitig

PNBC002

- 1 = Sendediode
- 2 = Empfangsdiode
- 3 = Auflagefläche mit M4 beidseitig

PNBC003

- 1 = Sendediode
- 2 = Empfangsdiode
- 3 = Auflagefläche mit M4 beidseitig

PNBC004

- 1 = Sendediode
- 2 = Empfangsdiode
- 3 = Auflagefläche mit M4 beidseitig

PNBC005

- 1 = Sendediode
- 2 = Empfangsdiode
- 3 = Auflagefläche mit M4 beidseitig

PNBC006/007/008

1 = Sendediode

- 2 = Empfangsdiode
- 3 = M4 beidseitig

DE

4.4 Bedienfeld

A16

68 = Versorgungsspannungsanzeige

83 = Signal

85 = Link/Act LED

Bezeichnung	Zustand	Funktion
Dowor	Grün	Betriebsspannung ein
Power	Aus	Betriebsspannung aus
	Grün	Signalstärke ok, Sensor messbereit
Signal	Grün blinkend	Signalstärke gering, Messergebnis nicht sicher
	Rot	kein Signal, Sensor verschmutzt und/oder außerhalb des Messbereiches
Link/A at	Gelb	Links vorhanden
LINK/ACI	Gelb blinkend	Kommunikation

4.5 Ergänzende Produkte

wenglor bietet Ihnen die passende Anschlusstechnik für Ihr Produkt.

5. Systemübersicht

Optionales Zubehör

6. Montagehinweise

Für die Inbetriebnahme des Sensors sind die entsprechenden elektrischen sowie mechanischen Vorschriften, Normen und Sicherheitsregeln zu beachten. Der Sensor muss vor mechanischer Einwirkung geschützt werden.

Bei der Montage des Sensors ist ein direkter Augenkontakt mit dem Laserstrahl unbedingt zu vermeiden. Der Laser-Warnhinweis muss im sichtbaren Bereich angebracht sein.

Um exakte Messergebnisse zu erzielen, muss bei der Installation des Sensors berücksichtigt werden, dass der Messstrahl genau senkrecht auf die Messoberfläche trifft. Eine ungenaue Ausrichtung verursacht geometrisch einen größeren Messweg.

Bewegte oder gestreifte Messobjekte

Um bewegte oder gestreifte Objekte zu erfassen, sollte die Montagerichtung des Sensorkopfes mit seiner Längsseite quer zur Bewegungsrichtung und quer zu den Streifen verlaufen. Auf diese Weise können optimale Messergebnisse im Kantenbereich erzielt und Abschattungen vermieden werden:

6.1 Auslieferungszustand

Beschreibung	Default-Wert
IP-Adresse	192.168.0.225
Subnetzmaske	255.255.0.0
Auswerteverfahren	COG
Mittelwertfilter	0 (entspricht Zustand AUS)
Messrate	Auto
Ausgaberate	10 kHz
Laser	Auto
Offset	0,0 mm
Analog-Modus	420 mA
E1	Ext. Teach A3
E2	Ext. Teach A4
A3	Schaltausgang PNP / NO
A4	Schaltausgang PNP / NO
Eingangslast 2mA	ein
Eingang	Ub aktiv
Teach-Modus	Vordergrund-Teach-in

7. Inbetriebnahme

Zwei Anschlussstecker sind in das Gehäuse des Sensors integriert. Der 8-polige Stecker versorgt den Sensor mit einer +24 V Betriebsspannung, während über die 4-polige Buchse die Kommunikation der Parametrieund Prozessdaten erfolgt. Um die Kommunikation der Daten zu optimieren, empfehlen wir ausschließlich den Einsatz von Ethernet-Switches.

HINWEIS!

Ist der Sensor direkt an eine Gigabit-Ethernet-Karte angeschlossen, kann dies dazu führen, dass die Netzwerkkarte die Polarität der Tx-/Rx-Leitung nicht richtig ermittelt. Verwenden Sie in diesem Fall ein gekreuztes Ethernetkabel (Crosslink), um den Sensor mit der Steuereinheit zu verbinden. Alternativ können Sie einen handelsüblichen 100 Mbit Ethernet-Switch verwenden.

8. Funktionsbeschreibung

Die Laserdistanzsensoren High-Precision der PNBC-Serie arbeiten mit einer hochauflösenden CMOS-Zeile und ermitteln den Abstand über eine Winkelmessung mit einer Messrate von bis zu 30 kHz. Der Sensor besitzt eine integrierte Elektronik und benötigt daher keinen zusätzlichen Controller.

Die ermittelten Abstandswerte werden als Prozessdaten über die Schnittstelle und am Analogausgang mit einer 16-Bit-Auflösung ausgegeben.

Entscheidend für die Messung ist das diffus reflektierte Licht des Messpunkts. Eine LED-Signalleuchte am Bedienfeld des Sensors signalisiert eine zu geringe Intensität des remittierten Lichts. Für den Fall einer zu geringen Remission senkt der Sensor automatisch seine Mess- und Ausgaberate ab, um exakte Messergebnisse zu liefern. Die Signalstärke wird auf der Website in Prozent angezeigt (siehe Statusanzeige, Kapitel 9.1). Der Lichtpunkt des Lasers erzeugt auf der CMOS-Zeile nicht nur einen beleuchteten Pixel, sondern eine Intensitätskurve, die sich über mehrere Pixel verteilt. Diese Intensitätskurve nennt man Peak und ist bestenfalls beidseitig steil, monoton ansteigend und symmetrisch. Der Verlauf ist vom Abstand, der internen Optik und von der Messobjekt-Oberfläche abhängig. Das Auswerteverfahren ist entscheidend für die erzielbare Mess-genauigkeit. Einige Oberflächen benötigen ein speziell dafür geeignetes Auswerteverfahren.

8.1 Auswerteverfahren

8.1.1 Schwerpunkt (COG)

Das COG-Auswerteverfahren berechnet den Schwerpunkt des Peaks, dessen x-Koordinate das gesuchte Rohergebnis darstellt. Für die Schwerpunktanalyse muss der Hintergrund herausgelöst werden, was die Berechnung einer Schwelle erfordert.

Die Schwelle ist ein Mittelwert aller Pixel-Intensitäten und liegt daher etwas über dem Hintergrundpegel. Für die Schwerpunktberechnung werden alle Pixel links und rechts vom Maximum herangezogen, deren Intensität über der Schwelle liegt. Durch dieses Auswerteverfahren erreichen die ausgegebenen Messwerte mit einer 16-Bit-Auflösung höchste Präzision.

8.1.2 Flanken (Edge)

Dieses Verfahren wertet die Flanken des Peaks aus. Der Vorteil bei diesem Auswerteverfahren liegt darin, dass asymmetrische Spitzen des Peaks, die z. B. durch Speckle-Effekte eines Blechs erzeugt werden könnnen, nicht in die Auswertung mit einfließen.

Auch mit der Flankenauswertung erreichen die Messwerte eine sehr präzise Auflösung von 13-Bit.

8.2 Messgenauigkeit und Fehlereinflüsse

8.2.1 Kalibrierprotokoll

Dem Sensor ist ein Kalibrierprotokoll beigelegt, das die Linearitätsabweichung in % zum Messwert auf mattweißer Oberfläche grafisch darstellt.

Nachfolgend ein Beispiel für ein Kalibrierprotokoll:

Calibration Protocol	the innovative fam
Order Number: PNBC001 Serial Number: 000001 MAC Address: 00:07:AB:F0:0C:AB	
Linearity Decartor 2005	erren and share and the most formed
20 Working Range [mm]	22 24
Measurement Conditions:	
Measuring Range	4 mm
Working Range	2024 mm
Measured Surface	White Surface
Evaluation Method	COG
Temperature	20° C (+/-1° C)
Laser Class	2 (max 1.0 mW)
Differences to the above data can appear due 1. Target material and surface 2. Target geometry 3. Sensor mounting 4. Temperature fluctuation during the m 5. Strong circulation of warm air betwee Further statements in the datasheet and the	e to: leasurement n sensor and tar get operati on instructions are valid.
Inspector: be Date: 05.05.2017	

8.2.2 Oberflächenmaterial

PNBC-Sensoren messen präzise die Distanz zu Objekten unabhängig der verwendeten Materialien, wie z. B. Metall, Plastik, Keramik, Gummi oder Papier. Bei stark spiegelnden Oberflächen oder Flüssigkeiten muss der Einsatz im Einzelfall geprüft werden.

8.2.3 Oberflächenbeschädigungen auf dem Messobjekt

Verläuft ein Kratzer auf der Oberfläche des Messobjekts quer zur Linsenachse, können stärkere Lichtemissionen auftreten, deren Maximum von der Mitte des Lichtflecks seitlich abweicht. Hierdurch wird eine veränderte Entfernung vorgetäuscht.

Handelt es sich um ein bewegtes Objekt, so bleibt der mittlere (integrale) Messwert beim Abtasten der beschädigten Oberfläche konstant, d.h. die positive und negative Flanke, verursacht durch die Beschädigung, heben sich gegenseitig auf.

Die Wahl eines geeigneten Mittelwertfilters minimiert ungewollte Ausschläge.

8.2.4 Fremdlicht

Fremdlicht kann zu Beeinträchtigungen der Messwertaufnahmen führen. Deshalb ist bei der Installation des Sensors darauf zu achten, dass die Einstrahlung von direktem oder reflektiertem Sonnenlicht in die Empfangsoptik vermieden wird.

8.2.5 Änderung der Remission

Die Sensoren verfügen über eine Regelung der Messrate, die sich automatisch an die Remission der zu messenden Objekte anpasst. Ändert sich die Remission der Oberfläche während des Messvorgangs, gleicht der Sensor die Schwankungen aus. Dabei kann es zu abweichenden Messwerten kommen. Durch das Einstellen einer fixen Messrate bleiben die Messwerte auch bei einer Änderung der Oberflächenremission konstant.

8.2.6 Winkelabhängigkeit der Messungen

Es besteht eine geringe Winkelabhängigkeit der Messung, wenn der Sensor nicht rechtwinklig auf die Objektoberfläche gerichtet ist. Eine ungenaue Positionierung des Sensors bewirkt einen größeren Abstand zum Objekt. Diese Distanzänderung kann durch eine entsprechende Offset-Verschiebung auf Null gesetzt werden.

9. Einstellungen

Um Einstellungen am Gerät vornehmen zu können, stehen mehrere Möglichkeiten zur Verfügung:

- Die integrierte Website, mit der die PNBC Sensoren ausgestattet sind.
 Diese Website arbeitet unabhängig vom Betriebssystem, der Sensor kann bequem über einen Standardbrowser parametriert werden. Die webbasierte Einstelloberfläche wird nicht für den Regelbetrieb an der Steuerung benötigt (Default IP-Adresse siehe Kapitel 6.1).
- · Die Konfigurations- und Anzeige-Software w-Teach auf www.wenglor.com als Download
- Ein Funktionsbaustein für die vereinfachte Einbindung der PNBC Sensoren in eine S7 Steuerung, ebenfalls als Download

Die Einstellmöglichkeiten werden im Folgenden am anschaulichen Beispiel der im Sensor integrierten Website erklärt

HINWEIS!

Ist der Sensor an eine Steuerung angeschlossen, werden die Einstellungen, die über die Website angepasst wurden, von den Einstellungen der Steuerung überschrieben.

Aufruf Website

Starten Sie den Webbrowser. Geben Sie die eingestellte IP-Adresse des Sensors in die Adresszeile Ihres Browsers ein und drücken Sie die Eingabetaste. Um sicherzugehen, dass der Browser die aktuellen Einstellungen auf der Website anzeigt, muss diese bei Änderungen immer automatisch neu geladen werden. Diese Einstellung ist browserspezifisch zu verändern und wird anhand des Internet Explorers exemplarisch aufgezeigt. Hierzu sollte unter **Extras → Internetoptionen → Browserverlauf → Einstellungen** die Auswahl auf "Bei jedem Zugriff auf die Website" stehen. Ansonsten werden Änderungen über die Website möglicherweise nicht korrekt angezeigt.

Verbindungen	Pro	ogramme	Erweitert	
Allgemein	Sicherheit	Datenschutz	Inhalte	
Geben Sie Startseite	pro Zeile eine A n-Registerkarter ww.wenglor.co	dresse an, um n zu erstellen. om/	•	Temporäre Internetdateien und Verlauf
	ktuelle Seite	Standardseite	▼ Leere Seite	Temporäre Internetdateien Internet Explorer speichert Kopien von Webseiten, Bildern und Medien, damit diese später schneller angezeint werden können
Browserverlauf — Löscht ter Kennwört	nporäre Dateien er und Webform erverlauf beim B	, den Verlauf, Cooki ularinformationen. eenden löschen Löschen	ies, gespeicherte Einstellungen	Neuere Versionen der gespeicherten Seiten suchen: Bei jedem Zugriff auf die Webseite Bei jedem Start von Internet Explorer Automatisch Niemals
Suchen Ändert Su	chstandards.		Einstellungen	Zu verwendender Speicherplatz (8 - 1024 MB) 8
Registerkarten — Ändert die Registerka	Anzeige von W arten.	ebseiten in	Einstellungen	C:\Users\DochenW\AppData\Local\Microsoft\Windows\Temporary Internet Files\
Darstellung Farben	Sprachen	Schriftarten	Barrierefreiheit	Ordner verschieben Objekte anzeigen Dateien anzeigen
		K Abbrech	n en) Übernehme	Verlauf Legen Sie fest, wie viele Tage die Liste besuchter Websites gespeichert werden soll. Tage, die die Seiten in "Verlauf" aufbewahrt werden: OK Abbrechen

Um nun die Website des Produkts (im Beispiel PNBC002) aufrufen zu können, muss die IP-Adresse wie beschrieben in der Adresszeile des Browsers eingegeben werden.

Werksseitig eingestellte IP-Adresse: 192.168.0.225

Es erscheint die Startseite mit allgemeinen Informationen zum angeschlossenen Sensor.

9.1 Seitenaufbau (Website)

Die Website ist in folgende Bereiche aufgeteilt:

① Sprachauswahl:

Über die Sprachauswahl kann die Website von Englisch (Auslieferungszustand) auf weitere Sprachen umgestellt werden.

Statusanzeige.	
Messwert	Gibt den aktuellen Abstandswert zwischen der Gehäusekante des Sensors und dem Objekt an.
E/A1E/A4	Stellt den Schaltzustand des jeweiligen Ein- bzw. Ausgangs dar.
Messrate	Zeigt den aktuellen Wert der Messrate an.
Signalstärke	Gibt die empfangene Lichtintensität wieder. Sollte die Lichtintensität zu niedrig sein (<2 %), dann befindet sich das Objekt entweder außerhalb des Messbereichs oder das Sendelicht reicht nicht für das aktuelle Messobjekt aus.
Temperatur	Zeigt die aktuelle Temperatur innerhalb des Sensorgehäuses an. Je nach Befesti- gung des Sensors liegt diese Temperatur 1015 °C über der Umgebungstempera- tur. Ein "OK" neben dem Wert gibt an, dass der Sensor innerhalb seiner Spezifikation betrieben wird. HINWEIS! Ist der Sensor zu warm (>50 °C), wird zusätzlich die Information "Too hot" angezeigt. In diesem Fall wird empfohlen den Sensor entweder zu kühlen, oder ihn so zu montieren, dass die Wärme besser abgeführt wird.
Encoder	Gibt den aktuellen Encoder-Wert an.

(2) curry

③ Seiteninhalt:

Je nachdem welche Kategorie im Menü auf der linken Seite ausgewählt ist, werden hier die jeweiligen Seiteninhalte angezeigt.

④ Kategorieauswahl:

Die Einstellungen sind in folgende Kategorien eingeteilt:

Device Allgemein	Allgemeine Informationen zum Sensor werden angezeigt.
Device Einstellungen	Netzwerkeinstellungen des Sensors (siehe Kapitel 9.2)
	 Messwerteinstellungen des Sensors (siehe Kapitel 9.2)
	Allgemeine Einstellungen (siehe Kapitel 9.2)
E/A-Einstellungen	Einstellungen der digitalen Ein- und Ausgänge werden angezeigt
	(siehe Kapitel 9.3).

9.2 Device Einstellungen (Website)

David	Netzwerk-Einstellungen		Status
Jevice Aligemein	IP-Adresse:	192.168.0.225	Messwert 26,143 mm
Device Einstellungen	Subnetzmaske:	255.255.0.0	E1: 0
2.0	Clanderd Catavar	160 254 150 1	E2: 0
A-Einstellungen	Standard-Gateway.	109.254.150.1	A3: 0
	Passwort	••••	A4: 1
		Ok	Messrate: 10131 Hz
		Wichtig: Nach Änderung ist Neustart erforderlich!	Signalstarke: 100%
			Temperatur: +36°C Ok!
	Messwert-Einstellungen		Encoder: 0
	Auswerteverfahren	COG 🗸 Ok	
	Mittelwertfilter (21000, 0: Aus):	Werte Ok	
	Messrate	Auto V Ok	
	Ausgaberate	30kHz V Ok	
	Laser	1.0mW (LK2) ✔ Ok	
	Offset	0.000 mm Ok	
	Allgemeine Einstellungen		
	Encoder-Reset	Reset	
	Default-Werte	Reset	

Netzwerk-Einstellungen:

Die IP-Adresse und die Adressen für Subnetzmaske und Gateway können im entsprechenden Feld geändert werden. Die Änderungen werden durch Eingabe des Passworts "admin" und durch einen Neustart aktiviert. Bitte achten Sie darauf, dass die gewählte Subnetzmaske im Netzwerk vorhanden ist. Ansonsten kann es passieren, dass Sie den Sensor nicht mehr im Netzwerk finden.

-	
Auswerteverfahren	Beschreibt die Funktion des Auswerteverfahrens (siehe Kapitel 8).
Mittelwertfilter	Der rollierende Mittelwertfilter kann über 2 bis 1000 Werte gebildet werden. Je kleiner der eingestellte Wert, desto schneller reagiert der Messwert auf Sprünge. Je größer der eingestellte Wert, desto geglätteter ist der Messwert.
Messrate	Mögliche Werte sind "Auto" (Messrate wird automatisch angepasst) oder "=Ausgabe- rate" (Messrate = Ausgaberate). Und es können Werte zwischen 900 Hz und 30000 Hz eingestellt werden.
Ausgaberate	Es können Werte zwischen 10 Hz und 30 000 Hz eingestellt werden. Die Messwerte werden einzeln mit der eingestellten Rate in einem Ethernet-Datenpaket gesammelt. Beispiel: Im Auswerteverfahren "Erweiterte kontinuierliche Messung" mit 150 Distanzwerten und einer eingestellten Ausgaberate von 1 kHz (entspricht 1 ms), erhalten Sie alle 150 ms das gesamte Datenpaket (siehe auch Kapitel 10.5.2).
Laser	Die Laserleistung kann manuell von 0,1mW bis 1,0 mW, oder automatisch eingestellt werden.
Offset	Falls gewünscht, kann hier eine Nullpunkt-Verschiebung eingegeben werden.
Schutzscheibe	Wenn aktiviert, werden durch diese Einstellung die Auswirkungen der Schutzscheibe auf den gemessenen Abstand und die Linearität kompensiert.

Allgemeine Einstellungen:

Encoder-Reset	Setzt den Encoder-Wert im Sensor auf Null zurück
Default-Werte	Setzt alle Einstellungen auf Werkseinstellung zurück (Ausnahme: Netzwerk-Einstel-
	lungen).

9.3 E/A-Einstellungen (Website)

Device Allgemein	Analogausgang		Status
Jevice Aligement	Analog-Modus	420mA V Ok	Messwert 240,154 mm
evice Einstellungen			E2: 0
			A1: 1
A-Einstellungen	E/A1 E/A2 E/A3 E/A	A4	A3: 1
	Pin-Funktion:	Schaltausgang V Ok	Messrate: 13707 Hz
	Ausgang:	PNP V Ok	Signalstärke: 100%
	Ausgangsfunktion:	NO V Ok	Temperatur: +28°C Ok! Encoder: 0
	Teach-Modus:	Vordergrund-Teachen V	
	Teach-In:	Teach-In	
	Schaltpunkt verändern:	300.000 mm Ok	
	Schalthysterese:	0.006 mm Ok	
	Schaltreserve:	0.000 mm Ok	

Analogausgang:

Der Analogausgang bietet die Wahlmöglichkeit zwischen 0...10 V und 4...20 mA. Wird der Analogausgang als Spannungsquelle verwendet, so sollte die angeschlossene Last 1 k Ω betragen. Ist der Analogausgang als Stromausgang konfiguriert, so sollte die angeschlossene Last 400 Ω betragen.

E/A einstellen:

Für die einzelnen Ein-/Ausgänge lassen sich unterschiedliche Pin-Funktionen einstellen. Je nach Einstellung bieten die Kontextmenüs entsprechende Auswahlmöglichkeiten an:

Schaltausgang	Der gewählte Ausgang fungiert als Schaltausgang.
Ext. Teach	An diesem Eingang kann durch Anlegen eines elektrischen Signals ein Schalteingang des Sensors neu eingelernt werden.
Encoder E1+E2	Es ist ein zweikanaliger Drehgeber mit rechteckigem HTL-Signal zu verwenden. Kanal A ist um 90° zu Kanal B verschoben. Es ist darauf zu achten, ein geschirmtes Kabel zu verwenden, um mögliche Störeinflüsse bzw. ein Übersprechen der Leitun- gen zu vermeiden.
Encoder-Reset	Der Encoder wird auf "0" gesetzt.
Laser aus	Durch die Aktivierung der Eingangslast oder der Eingangsspannung kann der Laser an- oder ausgeschaltet werden.
Fehler Ausgang	Ausgang schaltet bei Über- bzw. Unterschreiten der gewählten Intensität oder wenn sich das Messobjekt außerhalb des Messbereichs befindet. Image: schalter bei Über- bzw. Unterschreiten der gewählten Intensität oder wenn sich das Messobjekt außerhalb des Messbereichs befindet. Image: schalter bei Über- bzw. Unterschreiten der gewählten Intensität oder wenn sich das Messobjekt außerhalb des Messbereichs befindet. Image: schalter bei Über- bzw. Unterschreiten der gewählten Intensität sind nicht identisch mit der Angabe der Signalstärke in der Statusanzeige (siehe Kapitel 9.1).

Ausgang:

PNP-Ausgang	Die Last oder die Auswerteeinheit ist zwischen Minuspol (Bezug) und Ausgang ange- schlossen. Wenn der Sensor schaltet, wird der Ausgang über einen elektronischen Schalter mit dem Pluspol verbunden. Ein PNP-Ausgang kann auch einen Pulldown- Widerstand enthalten.
NPN-Ausgang	Die Last oder die Auswerteeinheit ist zwischen Pluspol (Bezug) und Ausgang ange- schlossen. Wenn der Sensor schaltet, wird der Ausgang über einen elektronischen Schalter mit dem Minuspol verbunden. Ein NPN-Ausgang kann auch einen Pull-up- Widerstand enthalten.
Push-Pull	PNP und NPN werden abwechselnd geschaltet.

Ausgangsfunktion:

NO	Normally open (= Schließer)
NC	Normally closed (= Öffner)

Teach-Modus:

Teach-in	Eine Funktion, bei der der Sensor per Knopfdruck oder Steuersignal aus den augen- blicklich erfassten Werten die zukünftigen Einstellwerte automatisch errechnet und abspeichert. Dieser Vorgang wird auch als Einlernen des Sensors bezeichnet.
Teach-in-Modus FT (Fenster-Teach-in)	Beim Fenster-Teach-in sind zwei Schaltpunkte vorhanden. Der Abstand zwischen den beiden Schaltpunkten wird als Fenster bezeichnet. Die Größe des Fensters wird als Fensterbreite (einstellbar) bezeichnet. Befindet sich ein Objekt innerhalb des Fensters, schaltet der Sensor.
	Objekt Schaltpunkt 2
Teach-in-Modus VT (Vordergrund-Teach- in)	Der Sensor wird eingelernt, während er auf das Objekt ausgerichtet ist. Der Schalt- abstand wird daraufhin automatisch auf einen Schaltabstand eingestellt, der etwas größer ist als der Abstand zwischen Sensor und Objekt. Somit schaltet der Sensor bei jedem Objekt, dessen Abstand zum Sensor kleiner oder gleich ist als der Abstand des zum Teach-in verwendeten Objekts. Sensor Teachabstand

Schaltpunkt verändern:

Der Schaltpunkt wird auf den eingegebenen Abstand verschoben. Beim Vordergrund-Tech-in ist das der oben beschriebene Tech-in-Abstand, beim Fenster-Tech-in ist es der Abstand zur Fenstermitte.

Schalthysterese:

Beschreibt den Abstand zwischen Einschalt- und Ausschaltpunkt. Aufgrund der sehr stabilen Messwerte der Sensorbaureihe kann die Hysterese sehr klein und sogar bis auf 0,000 mm eingestellt werden. Diese Einstellung kann in einzelnen Anwendungen sinnvoll sein, wenn mit einem Mittelwertfilter gearbeitet wird.

Schaltreserve:

Bezeichnet die Entfernung zwischen Teach-in-Abstand und Schaltpunkt des Sensors. Die Schaltreserve dient der sicheren Objekterkennung auch bei leicht schwankenden Abständen der Objekte zum Sensor

Eingangslast 2 mA

Die Eingangslast ist werksseitig auf 2 mA eingestellt, kann aber über das Dropdown-Menü ausgeschaltet werden (z. B. wenn die SPS einen hochohmigen PNP-Ausgang besitzt).

Eingang einstellen:

Ub aktiv: Anstehende Aufgaben werden ausgeführt wenn Eingangsspannung an Ub inaktiv: Anstehende Aufgaben werden ausgeführt wenn Eingangsspannung aus

10. Schnittstellenprotokoll

Dieser Abschnitt beschreibt den Aufbau und die Funktion der TCP-Kommandos zur Steuerung und Einstellung des Laserdistanzsensors High-Precision PNBCxxx.

Die Kommandos werden über den Port 3000 gesendet. Nach Öffnen des Ports sendet das Gerät ohne weitere Aufforderung Datenpakete.

Weitere Informationen zu Header und Datenformat finden Sie in Kapitel 10.5.

Vor der Parametrierung wird empfohlen, die Messung zu stoppen.

Die Groß-/Kleinschreibung ist zu beachten.

10.1 Allgemeine Messbefehle

10.1.1 Datenformat "Kontinuierliche Distanzmessung" einstellen

Befehl	<pre>set_measure_start<cr></cr></pre>
Antwort	Datenstrom (siehe Kapitel 10.5.1)
Beschreibung	Startet den Datenstrom der "Kontinuierlichen Messung" (Distanzdaten).

10.1.2 Datenformat "Erweiterte kontinuierliche Messung" einstellen

Befehl	<pre>set_ext_measure_start<cr></cr></pre>
Antwort	Datenstrom (siehe Kapitel 10.5.2)
Beschreibung	Startet den Datenstrom der "Erweiterten kontinuierlichen Messung" (Distanz-, Intensität- und Encoderdaten).

10.1.3 Datenformat "Peakdaten" einstellen

Befehl	set_peak <cr></cr>
Antwort	Datenstrom (siehe Kapitel 10.5.3)
Beschreibung	Es wird ein Peak gesendet.

10.1.4 Messung stoppen

Befehl	<pre>set_measure_stop<cr></cr></pre>
Antwort	keine Antwort
Beschreibung	Jede Messung und jeder Versand von Messdaten wird eingestellt.

10.1.5 Reply-Modus

Befehl	<pre>set_reply_echo_activate<cr></cr></pre>
	<pre>set_reply_echo_deactivate<cr></cr></pre>
Antwort	Nur bei "reply echo activate": OK:reply_echo_activate <cr></cr>
Beschreibung	Alle Befehle werden quittiert (Werkseinstellung: Modus deaktiviert).

10.2 Sensoreinstellungen

10.2.1 IP-Adresse einstellen

Befehl	set_ip_addr=192.168.0.225 <cr></cr>
Antwort	<pre>Im Reply-Echo-Mode: OK:ip_addr=192.168.0.225<cr></cr></pre>
Beschreibung	Die neu eingestellte IP-Adresse wird erst nach einem Neustart aktiv.

10.2.2 Adresse Subnetzmaske einstellen

Befehl	<pre>set_netmask_addr=255.255.0.0<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:net_mask=255.255.0.0<cr></cr></pre>
Beschreibung	Die neu eingestellte Subnetzmaske wird erst nach einem Neustart aktiv.

10.2.3 Gateway-Adresse einstellen

Befehl	<pre>set_gateway_addr=192.168.0.1<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:gateway_addr=192.168.0.1<cr></cr></pre>
Beschreibung	Die neu eingestellte Gateway-Adresse wird erst nach einem Neustart aktiv.

10.2.4 Netzwerk-Einstellungen auf Default-Werte zurücksetzen

Befehl	<pre>set_activate_network_default<cr></cr></pre>
Antwort	Im Reply-Echo-Mode: OK:activate_network_default <cr></cr>
Beschreibung	IP-Adresse, Gateway und Subnetzmaske werden zurückgesetzt.

10.2.5 Auswerteverfahren einstellen

Befehl	<pre>set_calc_mode=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:calc_mode=x<cr></cr></pre>
Beschreibung	Mit diesem Befehl kann das Peak-Auswerteverfahren eingestellt werden. Mögliche Werte für "x" sind: 2: COG (Werkseinstellung) 5: Edge

10.2.6 Mittelwertfilter einstellen

Befehl	<pre>set_avg_filter_cnt=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:avg_filter_cnt=x<cr></cr></pre>
Beschreibung	Der rollierende Mittelwert kann aus einem Wert zwischen 2 und 1 000 gebildet werden. Je kleiner der eingestellte Wert, desto schneller reagiert der Messwert auf Sprünge. Je größer der eingestellte Wert, desto geglätteter ist der Messwert. Mögliche Werte für "x" sind:
	0: aus (Werkseinstellung) 1: aus 21000

10.2.7 Ausgaberate einstellen

Befehl	<pre>set_freq=x<cr></cr></pre>
Antwort	Im Reply-Echo-Mode: OK:freq=x <cr></cr>
Beschreibung	Die Ausgaberate wird in Hertz eingestellt (Werkseinstellung: 10000 Hz). Die Messwerte werden einzeln mit der eingestellten Rate in einem Ethernet-Datenpaket gesammelt. Beispiel: Im Auswerteverfahren "Erweiterte kontinuierliche Messung" mit 150 Distanzwerten und einer eingestellten Ausgaberate von 1000 Hz (entspricht 1 ms) erhält man alle 150 ms das gesamte Datenpaket. Mögliche Werte für "x" sind: 1030000

10.2.8 Messrate einstellen

Befehl	<pre>set_meas_freq=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:meas_freq=x<cr></cr></pre>
Beschreibung	Die Messrate wird in Hertz eingestellt.
	Mögliche Werte für "x" sind:
	0: Die Messrate entspricht der Ausgaberate
	90030 000

10.2.9 Paketlänge einstellen

Befehl	<pre>set_packet_size=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:packet_size=x<cr></cr></pre>
Beschreibung	Hier kann die gewünschte Anzahl der Distanzwerte pro Paket eingestellt werden. Mögliche Werte für "x" sind: • Bei kontinuierlicher Messung: 1450
	Bei erweiterter kontinuierlicher Messung: 1150
	Der eingegebene Wert bleibt solange gültig, bis das Datenformat verändert wird. Die Werte werden dann wieder auf Werkseinstellung zurückgesetzt (150/450).

10.2.10 Regelung Laserleistung und Messrate einstellen

Befehl	<pre>set_regulator=x<cr></cr></pre>
Antwort	Im Reply-Echo-Mode: OK:regulator=x <cr></cr>
Beschreibung	Hier wird die Messraten-/Laserleistungsregelung eingestellt. Mögliche Werte für "x" sind:
	0: Messraten- UND Laserleistungsregelung automatisch (Werkseinstellung)
	1: Messratenregelung automatisch, Laserleistungsregelung manuell einstellbar
	2: Laserleistungsregelung automatisch, Messratenregelung manuell einstellbar
	3: Messraten- und Laserleistungsregelung manuell einstellbar
	Bei der Laserleistungs- und Messratenregelung wählt der Sensor automatisch die Einstel- lung, welche die beste Intensität ergibt. Je nach Anwendungsfall ist eher die Messratenre- gelung bzw. die Laserleistungsregelung vorzuziehen. Für konstante Messzeiten sollte die automatische Laserleistungsregelung gewählt werden. Für konstante Laserleistungen ist die Messratenregelung besser geeignet.

10.2.11 Schutzscheiben-Kompensation

Befehl	<pre>set_compensation_activate<cr></cr></pre>
	set_compensation_deactivate <cr></cr>
Antwort	keine Antwort
Beschreibung	Aktiviert bzw. deaktiviert die Schutzscheiben-Kompensation.

10.2.12 Laserleistung einstellen

Befehl	<pre>set_laser=x<cr></cr></pre>
Antwort	Im Reply-Echo-Mode: OK:laser=x <cr></cr>
Beschreibung	Die Laserleistung ist in 1/10 mW-Schritten einzustellen.
	Mögliche Werte für "x" sind:
	Auto (Werkseinstellung) 1 (0,1 mW)10 (1 mW)
	Die Einstellung ist nur bei manueller Laserleistungsregelung wirksam (siehe Kapitel 10.2.10)

10.2.13 Offset einstellen

Befehl	<pre>set_digout_offset=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:digout_offset=x<cr></cr></pre>
Beschreibung	Hier kann eine Nullpunkt-Verschiebung eingegeben werden. Der Offset wird als 16-Bit- Wert eingegeben (Werkseinstellung: 0.000). Mögliche Werte für "x" sind: -30 00030 000 Umrechnung des Offsets von digital in mm: $Offset[mm] = \frac{x}{65536} \times Messbereich[mm]$

10.2.14 Encoder-Reset

Befehl	<pre>set_clear_encoder<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:clear_encoder<cr></cr></pre>
Beschreibung	Der interne Encoderzähler wird auf Null zurückgesetzt.

10.2.15 Encoderzähler-Rechts-Shift

Befehl	<pre>set_enc_right_shift=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:enc_rshift=x<cr></cr></pre>
Beschreibung	Mit diesem Befehl wird das Teilerverhältnis des Encodereingangs eingestellt. Mögliche Werte für "x" sind:
	1: Jeder 2. Encoderimpuls wird gezählt 2: Jeder 4. Encoderimpuls wird gezählt (Werkseinstellung) 3: 3: Jeder 256. Encoderimpuls wird gezählt

10.2.16 Laser ein-/ausschalten

Befehl	<pre>set_activate_laser<cr></cr></pre>
	<pre>set_deactivate_laser<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:activate_laser<cr></cr></pre>
	OK:deactivate_laser <cr></cr>
Beschreibung	Der Laser wird per TCP-Befehl ein- bzw. ausgeschaltet (Werkseinstellung: Laser an).
	Grundsätzlich ist die Pin-Einstellung dominant. Diese Einstellung kann durch den Eingabe-
	befehl nicht geändert werden.

10.2.17 Auf Default-Werte zurücksetzen

Befehl	<pre>set_activate_default<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode: OK:activate_default<cr></cr></pre>
Beschreibung	Setzt alle Einstellungen auf Werkseinstellung zurück mit Ausnahme der Netzwerk-Einstel-
	lungen.

10.3 E/A-Einstellungen

10.3.1 Analogmodus einstellen

Befehl	<pre>set_anaout_mode=x<cr></cr></pre>
Antwort	Im Reply-Echo-Mode: OK:anaout_mode=x <cr></cr>
Beschreibung	Einstellen des Analogmodus. Mögliche Werte für "x" sind:
	1: 010 V 8: 420 mA (Werkseinstellung)

10.3.2 Pin-Funktion einstellen

Befehl	set_usrio1_pin_function=x <cr></cr>
	<pre>set_usrio2_pin_function=x<cr></cr></pre>
	<pre>set_usrio3_pin_function=x<cr></cr></pre>
	<pre>set_usrio4_pin_function=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_pin_function=x<cr></cr></pre>
Beschreibung	Einstellen der Pin-Funktion. Mögliche Werte für "x" sind:
	1: Schaltausgang 2: Ext. Teach-Input für A1 3: Ext. Teach-Input für A2 4: Ext. Teach-Input für A3 5: Ext. Teach-Input für A4 6: Encoder-Eingang (E1+E2) 7: Encoder-Reset-Eingang 10: Laser-Aus-/Eingang 11: Fehlerausgang

10.3.3 Minimale Intensität einstellen

Befehl	set_usrio1_min_err_intens=x <cr></cr>
	<pre>set_usrio2_min_err_intens=x<cr></cr></pre>
	<pre>set_usrio3_min_err_intens=x<cr></cr></pre>
	<pre>set_usrio4_min_err_intens=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_min_err_intens=x<cr></cr></pre>
Beschreibung	Einstellen des minimalen Intensitätswerts für den Fehler Ausgang (siehe Kapitel 9.3).
	Mögliche Werte für "x" sind:
	04095

10.3.4 Maximale Intensität einstellen

Befehl	<pre>set_usrio1_max_err_intens=x<cr></cr></pre>
	<pre>set_usrio2_max_err_intens=x<cr></cr></pre>
	<pre>set_usrio3_max_err_intens=x<cr></cr></pre>
	<pre>set_usrio4_max_err_intens=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_max_err_intens=x<cr></cr></pre>
Beschreibung	Einstellen des maximalen Intensitätswerts für den Fehler Ausgang (siehe Kapitel 9.3).
	Mögliche Werte für "x" sind:
	04095

10.3.5 Ausgangsmodus einstellen

Befehl	<pre>set_usrio1_output_mode=x<cr> set_usrio2_output_mode=x<cr> set_usrio3_output_mode=x<cr> set_usrio4_output_mode=x<cr></cr></cr></cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_output_mode=x<cr></cr></pre>
Beschreibung	Einstellen des Ausgangsmodus. Mögliche Werte für "x" sind:
	1: PNP
	2: NPN
	3: Push-Pull

10.3.6 Ausgangsfunktion einstellen

Befehl	<pre>set_usrio1_output_function=x<cr> set_usrio2_output_function=x<cr> set_usrio3_output_function=x<cr> set_usrio4_output_function=x<cr></cr></cr></cr></cr></pre>
Antwort	Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_output_function=x <cr></cr>
Beschreibung	Einstellen der Ausgangsfunktion. Mögliche Werte für "x" sind: 1: Schließer (NO) 2: Öffner (NC)

10.3.7 Schaltabstand einlernen (Teach-in)

Befehl	<pre>set_usrio1_teach_in<cr> set_usrio2_teach_in<cr> set_usrio3_teach_in<cr> set_usrio4_teach_in<cr></cr></cr></cr></cr></pre>
Antwort	Im Reply-Echo-Mode (z. B. I/O3): OK:usr_io3_switch_dist_mm=87.614 <cr></cr>
Beschreibung	Aus den augenblicklich erfassten Werten werden künftige Einstellwerte automatisch er- rechnet und abgespeichert. HINWEIS! Die Pin-Funktion des jeweiligen Ausgangs muss als Schaltausgang eingestellt sein.

10.3.8 Teach-Modus einstellen

Befehl	<pre>set_usrio1_teach_mode=x<cr></cr></pre>
	<pre>set_usrio2_teach_mode=x<cr></cr></pre>
	<pre>set_usrio3_teach_mode=x<cr></cr></pre>
	<pre>set_usrio4_teach_mode=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_teach_mode=x<cr></cr></pre>
Beschreibung	Einstellen des Teach-Modus. Mögliche Werte für "x" sind:
	1: Vordergrund-Teach-in (Werkseinstellung) 2: Fenster-Teach-in
	<u>Vordergrund-Teach-in:</u> Der Sensor wird auf das Objekt ausgerichtet und eingelernt. Die Einstellung des Teach-in-Abstands erfolgt automatisch, so dass der Sensor schaltet, so- bald der Abstand zwischen Sensor und Objekt kleiner oder gleich dem zuvor eingelernten Abstand ist.
	<u>Fenster-Teach-in:</u> Beim Fenster-Teach-in sind zwei Schaltpunkte vorhanden. Der Abstand zwischen den beiden Schaltpunkten gibt die Fensterbreite an. Wenn sich das Objekt in- nerhalb des Fensters befindet, schaltet der Sensor.

10.3.9 Schaltpunkt einstellen

Befehl	<pre>set_usrio1_switch_dist_mm=x<cr> set_usrio2_switch_dist_mm=x<cr> set_usrio3_switch_dist_mm=x<cr> set_usrio4_switch_dist_mm=x<cr></cr></cr></cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_switch_dist_mm=x<cr></cr></pre>
Beschreibung	Der Schaltpunkt wird auf den eingegebenen Abstand verschoben. Beim Vordergrund-
	Teach-in ist das der Teach-in-Abstand (siehe Kapitel 10.3.8), beim Fenster-Teach-in ist es
	der Abstand zur Fenstermitte.
	Die Werte für "x" mussen im Arbeitsbereich liegen, Beispiel: 22.123 (Angabe in mm).
	HINWEIS! Bei nicht ganzen Zahlen muss ein Punkt anstelle des Kommas gesetzt werden.

10.3.10 Hysterese einstellen

Befehl	<pre>set_usrio1_hysteresis_mm=x<cr></cr></pre>
	set_usrio2_hysteresis_mm=x <cr></cr>
	set_usrio3_hysteresis_mm=x <cr></cr>
	<pre>set_usrio4_hysteresis_mm=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_hysteresis_mm=x<cr></cr></pre>
Beschreibung	Die Hysterese beschreibt den Abstand zwischen Einschalt- und Ausschaltpunkt.
	Mögliche Werte für "x" sind:
	01/4 des Messbereichs
	Beispiel: 0.030 (Angabe in mm)
	HINWEIS! Bei nicht ganzen Zahlen muss ein Punkt anstelle des Kommas gesetzt werden.

10.3.11 Schaltreserve einstellen

Befehl	<pre>set_usrio1_switch_res_mm=x<cr> set_usrio2_switch_res_mm=x<cr> set_usrio3_switch_res_mm=x<cr> set_usrio4_switch_res_mm=x<cr></cr></cr></cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_switch_res_mm=x<cr></cr></pre>
Beschreibung	Die Schaltreserve bezeichnet die Entfernung zwischen Teach-in-Abstand und Schalt- punkt des Sensors. Die Schaltreserve dient der sicheren Objekterkennung auch bei leicht schwankenden Abständen der Objekte zum Sensor. Mögliche Werte für "x" sind:
	0Messbereich/4
	Beispiel: 0.120 (Angabe in mm) Die Schaltreserve kann nur beim Vordergrund-Teach-in eingestellt werden.
	HINWEIS! Bei nicht ganzen Zahlen muss ein Punkt anstelle des Kommas gesetzt werden.

10.3.12 Fensterbreite einstellen

Befehl	<pre>set_usrio1_window_size_mm=x<cr> set_usrio2_window_size_mm=x<cr> set_usrio3_window_size_mm=x<cr> set_usrio4_window_size_mm=x<cr></cr></cr></cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_window_size_mm=x<cr></cr></pre>
Beschreibung	Einstellen der Fensterbreite (siehe Kapitel 10.3.8) Der Eingabewert muss kleiner sein als der Messbereich des Sensors, Beispiel: 0.100 (Angabe in mm). HINWEIS! Bei nicht ganzen Zahlen muss ein Punkt anstelle des Kommas gesetzt werden.

10.3.13 Eingangslast einstellen

Befehl	<pre>set_usrio1_input_load=x<cr> set_usrio2_input_load=x<cr> set_usrio3_input_load=x<cr> set_usrio4_input_load=x<cr></cr></cr></cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_input_load=x<cr></cr></pre>
Beschreibung	Einstellen der Eingangslast. Mögliche Werte für "x" sind: 1: Eingangslast aktiv (2 mA; Werkseinstellung) 2: Eingangslast nicht aktiv

10.3.14 Eingangsfunktion einstellen

Befehl	set_usrio1_input_function=x <cr></cr>
	<pre>set_usrio2_input_function=x<cr></cr></pre>
	<pre>set_usrio3_input_function=x<cr></cr></pre>
	<pre>set_usrio4_input_function=x<cr></cr></pre>
Antwort	<pre>Im Reply-Echo-Mode (z. B. I/O1): OK:usr_io1_input_function=x<cr></cr></pre>
Beschreibung	Einstellen der Eingangsfunktion.
	Mögliche Werte für "x" sind:
	1: Ub aktiv (anstehende Aufgaben werden ausgeführt, wenn Ub = an; Werkseinstellung)
	2: Ub inaktiv (anstehende Aufgaben werden ausgeführt, wenn Ub = 0 V)

10.4 Abfragebefehle

10.4.1 IP-Adresse abfragen

Befehl	get_ip_addr <cr></cr>
Antwort	Beispiel: OK:ip_addr=192.168.0.225 <cr></cr>
Beschreibung	IP-Adresse wird ausgegeben.

10.4.2 Adresse Subnetzmaske abfragen

Befehl	get_net_mask <cr></cr>
Antwort	Beispiel: OK:net_mask=255.255.0.0 <cr></cr>
Beschreibung	Adresse Subnetzmaske wird ausgegeben.

10.4.3 Adresse Gateway abfragen

Befehl	get_gateway <cr></cr>
Antwort	Beispiel: OK:gateway_addr=169.254.150.1 <cr></cr>
Beschreibung	Adresse Gateway wird ausgegeben.

10.4.4 MAC-Adresse abfragen

Befehl	get_mac_address <cr></cr>
Antwort	Beispiel: OK:mac_address=0007ABF00CAB <cr></cr>
Beschreibung	MAC-Adresse wird ausgegeben.

10.4.5 Hardware-Version abfragen

Befehl	get_hwversion <cr></cr>
Antwort	Beispiel: OK:hw_version=3.0.0 <cr></cr>
Beschreibung	Hardware-Version wird ausgegeben.

10.4.6 Beschreibung abfragen

Befehl	get_description <cr></cr>
Antwort	OK:description=High_Performance_Distance_Sensor <cr></cr>
Beschreibung	Beschreibung wird ausgegeben. Leerzeichen sind durch Unterstriche ersetzt.

10.4.7 Hersteller abfragen

Befehl	get_manufacturer <cr></cr>
Antwort	OK:manufacturer=wenglor_sensoric_GmbH <cr></cr>
Beschreibung	Hersteller wird ausgegeben. Leerzeichen sind durch Unterstriche ersetzt.

10.4.8 Bestellnummer abfragen

Befehl	get_name <cr></cr>
Antwort	Beispiel: OK:name=PNBC005 <cr></cr>
Beschreibung	Bestellnummer wird ausgegeben.

10.4.9 Seriennummer abfragen

Befehl	get_serial <cr></cr>
Antwort	Beispiel: OK:serial=001020 <cr></cr>
Beschreibung	Seriennummer wird ausgegeben.

10.4.10 Produktversion abfragen

Befehl	get_pversion <cr></cr>
Antwort	Beispiel: OK:pversion=1.0.0 <cr></cr>
Beschreibung	Produktversion wird ausgegeben.

10.4.11 Einstellung Auswerteverfahren abfragen

Befehl	get_calc_mode <cr></cr>
Antwort	Beispiel: OK:calc_mode=2 <cr></cr>
Beschreibung	Das gewählte Auswerteverfahren wird ausgegeben. Mögliche Werte sind:
	2: COG
	5: Edge

10.4.12 Mittelwertfilter abfragen

Befehl	<pre>get_avg_filter_cnt<cr></cr></pre>
Antwort	Beispiel: OK:avg_filter_cnt=345 <cr></cr>
Beschreibung	Mittelwertfilter wird ausgegeben. Mögliche Werte sind:
	0: aus
	21000

10.4.13 Ausgaberate abfragen

Befehl	get_freq <cr></cr>
Antwort	Beispiel: OK:freq=26667 <cr></cr>
Beschreibung	Die Ausgaberate wird ausgegeben. Mögliche Werte sind:
	1030000
	Die Ausgaberate wird in Hertz ausgegeben.

10.4.14 Messrate abfragen

Befehl	get_meas_freq <cr></cr>
Antwort	Beispiel: OK:meas_freq=26667 <cr></cr>
Beschreibung	Die Messrate (Kehrwert der Belichtungszeit) wird ausgegeben.
	Mögliche Werte sind:
	90030000
	Die Messrate wird in Hertz ausgegeben

Befehl	get_regulator <cr></cr>
Antwort	Beispiel: OK:regulator=0 <cr></cr>
Beschreibung	Die Einstellungen für Laserleistung und Messrate werden ausgegeben. Mögliche Werte sind:
	0: Messratenregelung UND Laserleistungsregelung automatisch 1: Messraten-Automatik, Laserleistung manuell einstellbar 2: Laserleistungsautomatik, Messrate manuell einstellbar 3: Laserleistung und Messrate manuell einstellbar

10.4.15 Regelung Laserleistung und Messrate abfragen

10.4.16 Laserleistung abfragen

Befehl	get_laser <cr></cr>
Antwort	Beispiel: OK:laser=10 <cr></cr>
Beschreibung	Laserleistung wird in 1/10 mW ausgegeben. Mögliche Werte sind:
	1 (0,1 mW)10 (1 mW)

10.4.17 Encoder-Rechts-Shift-Einstellung abfragen

Befehl	get_enc_rshift <cr></cr>
Antwort	Beispiel: OK:enc_rshift=2 <cr></cr>
Beschreibung	Das Teilerverhältnis des Encoder-Eingangs wird ausgegeben. Mögliche Werte sind:
	1: jeder 2. Encoderimpuls wird gezählt 2: jeder 4. Encoderimpuls wird gezählt : 8: jeder 256. Encoderimpuls wird gezählt

10.4.18 Analogmodus abfragen

Befehl	get_anaout_mode <cr></cr>
Antwort	Beispiel: OK:anaout_mode=1 <cr></cr>
Beschreibung	Die Einstellung des Analogausgangs wird ausgegeben. Mögliche Werte sind:
	1: 010 V 8: 420 mA

10.4.19 Pin-Funktion abfragen

Befehl	get_usriol_pin_function <cr></cr>
	get_usrio2_pin_function <cr></cr>
	get_usrio3_pin_function <cr></cr>
	get_usrio4_pin_function <cr></cr>
Antwort	Beispiel: OK:usr_io1_pin_function=1 <cr></cr>
Beschreibung	Die Einstellung der Pin-Funktion wird ausgegeben.
	Mogliche werte sind:
	1: Schaltausgang
	2: Ext. Teach-Input für A1
	3: Ext. Teach-Input für A2
	4: Ext. Teach-Input für A3
	5: Ext. Teach-Input für A4
	6: Encoder-Eingang (E1+E2)
	7: Encoder-Reset-Eingang
	10: Laser-Aus-/Eingang
	11: Fehlerausgang

10.4.20 Minimale Intensität abfragen

Befehl	get_usrio1_min_err_intens <cr></cr>
	get_usrio2_min_err_intens <cr></cr>
	get_usrio3_min_err_intens <cr></cr>
	get_usrio4_min_err_intens <cr></cr>
Antwort	Beispiel: OK:usr_io1_min_err_intens=1000 <cr></cr>
Beschreibung	Abfrage des minimalen Intensitätswerts für den Fehler Ausgang (siehe Kapitel 9.3).
	Mögliche Werte sind:
	04095

10.4.21 Maximale Intensität abfragen

Befehl	get_usrio1_max_err_intens <cr></cr>
	get_usrio2_max_err_intens <cr></cr>
	get_usrio3_max_err_intens <cr></cr>
	get_usrio4_max_err_intens <cr></cr>
Antwort	Beispiel: OK:usr_io1_max_err_intens=3900 <cr></cr>
Beschreibung	Abfrage des maximalen Intensitätswerts für den Fehler Ausgang (siehe Kapitel 9.3).
	Mögliche Werte sind:
	04095

10.4.22 Ausgangsmodus abfragen

Befehl	<pre>get_usrio1_output_mode<cr> get_usrio2_output_mode<cr> get_usrio3_output_mode<cr> get_usrio4_output_mode<cr></cr></cr></cr></cr></pre>
Antwort	Beispiel: OK:usr_io1_output_mode=1 <cr></cr>
Beschreibung	Der Ausgangsmodus wird ausgegeben. Mögliche Werte sind: 1: PNP 2: NPN 3: Push-Pull

10.4.23 Ausgangsfunktion abfragen

Befehl	<pre>get_usrio1_output_function<cr> get_usrio2_output_function<cr> get_usrio3_output_function<cr></cr></cr></cr></pre>
	get_usrio4_output_function <cr></cr>
Antwort	Beispiel: OK:usr_io1_output_function=1 <cr></cr>
Beschreibung	Die Ausgangsfunktion wird ausgegeben. Mögliche Werte sind:
	1: Schließer 2: Öffner

10.4.24 Schaltabstand abfragen

Befehl	get_usrio1_switch_dist_mm <cr></cr>
	get_usrio2_switch_dist_mm <cr></cr>
	get_usrio3_switch_dist_mm <cr></cr>
	get_usrio4_switch_dist_mm <cr></cr>
Antwort	Beispiel: OK:usr_io1_switch_dist_mm=75.5 <cr></cr>
Beschreibung	Der Schaltabstand wird in mm ausgegeben.

10.4.25 Teach-Modus abfragen

Befehl	<pre>get_usrio1_teach_mode<cr> get_usrio2_teach_mode<cr> get_usrio3_teach_mode<cr></cr></cr></cr></pre>
	get_usrio4_teach_mode <cr></cr>
Antwort	Beispiel: OK:usr_io1_teach_mode=2 <cr></cr>
Beschreibung	Der Teach-Modus wird ausgegeben.
	Mögliche Werte sind:
	1: Vordergrund-Teach-in
	2: Fenster-Teach-in

10.4.26 Hysterese abfragen

Befehl	<pre>get_usrio1_hysteresis_mm<cr> get_usrio2_hysteresis_mm<cr> get_usrio3_hysteresis_mm<cr> get_usrio4_hysteresis_mm<cr></cr></cr></cr></cr></pre>
Antwort	Beispiel: OK:usr_io1_hysteresis_mm=0.120 <cr></cr>
Beschreibung	Die Hysterese wird in mm ausgegeben.

10.4.27 Schaltreserve abfragen

Befehl	<pre>get_usrio1_switch_res_mm<cr> get_usrio2_switch_res_mm<cr> get_usrio3_switch_res_mm<cr> get_usrio4_switch_res_mm<cr></cr></cr></cr></cr></pre>
Antwort	Beispiel: OK:usr_io1_switch_res_mm=0.188 <cr></cr>
Beschreibung	Die Entfernung zwischen Teach-in-Abstand und Schaltpunkt des Sensors wird in mm ausgegeben.

10.4.28 Fensterbreite abfragen

Befehl	<pre>get_usrio1_window_size_mm<cr> get_usrio2_window_size_mm<cr></cr></cr></pre>
	get_usrio3_window_size_mm <cr></cr>
	get_usrio4_window_size_mm <cr></cr>
Antwort	Beispiel: OK:usr_io1_window_size_mm=12.755 <cr></cr>
Beschreibung	Die Fensterbreite wird in mm ausgegeben.

10.4.29 Eingangslast abfragen

Befehl	get_usrio1_input_load <cr></cr>
	get_usrio2_input_load <cr></cr>
	get_usrio3_input_load <cr></cr>
	get_usrio4_input_load <cr></cr>
Antwort	Beispiel: OK:usr_io1_input_load=1 <cr></cr>
Beschreibung	Der Status der Eingangslast wird ausgegeben.
	Mögliche Werte sind:
	1: Eingangslast aktiv (2 mA)
	2: Eingangslast nicht aktiv

10.4.30 Eingangsfunktion abfragen

Befehl	<pre>get_usrio1_input_function<cr> get_usrio2_input_function<cr></cr></cr></pre>
	<pre>get_usrio3_input_function<cr></cr></pre>
	get_usr104_1nput_function <cr></cr>
Antwort	Beispiel: OK:usr_io1_input_function=1 <cr></cr>
Beschreibung	Die Eingangsfunktion wird ausgegeben.
	moglicite weite sind.
	1: Ub aktiv
	2: Ub inaktiv (= bei 0 V aktiv)

10.4.31 Eingangsstatus abfragen

Befehl	(z. B. I/O1): get_usr_io1 <cr></cr>
Antwort	Beispiel: OK:usr_io1=1 <cr></cr>
Beschreibung	Liefert den Eingangszustand am Pin, mögliche Werte: 0 und 1

10.4.32 Ein-/Ausgangsstatus aller Ein-/Ausgänge abfragen

Befehl	get_usr_allinputs <cr></cr>
Antwort	OK:usr_io_allinputs=0110 <cr></cr>
Beschreibung	Liefert den Zustand aller Ein-/Ausgänge in der Reihenfolge EA4, EA3, EA2 und EA1. Mögli- che Werte sind: 0 und 1 Für oben genanntes Beispiel gilt: EA4: 0 (inaktiv) EA3: 1 (aktiv) EA2: 1 (aktiv) EA1: 0 (inaktiv)

10.4.33 Paketlänge abfragen

Befehl	get_packet_size <cr></cr>
Antwort	OK:packet_size=120 <cr></cr>
Beschreibung	Die Anzahl der Messwerte pro Datenformat wird ausgegeben. Mögliche Werte sind:
	1450 (bei kontinuierlicher Messung) 1150 (bei erweiterter kontinuierlicher Messung)

10.5 Header- und Datenformat

Nach dem Öffnen des Ports 3000 sendet der Sensor Datenpakete im zuletzt eingestellten Datenformat (Ausnahme: Peak-Daten, siehe Kapitel 10.5.3).

Folgende Datenformate sind möglich:

- · Kontinuierliche Distanzmessung (Werkseinstellung)
- · Erweiterte kontinuierliche Distanzmessung
- Peak-Daten

Header und Daten werden auf zwei TCP/IP Pakete aufgeteilt, so dass beide Pakete ungefähr gleich groß sind. Bei einem Header von 94 Byte und Daten von 900 Byte (gesamt 994 Byte) enthält das erste Paket 496 Byte und das zweite 498 Byte. Am Anfang des Pakets steht immer der Header, darauf folgend kommen die Daten.

Der Aufbau der Daten wird in den nachfolgenden Tabellen beschrieben. Über das Feld "Datenformat" wird das jeweilige Datenformat identifiziert.

Beispiel: Steht im Feld "Datenformat" der Wert 17520, dann entspricht dies einer kontinuierlichen Distanzmessung.

Alle Werte sind little-endian, d. h. zuerst kommt das niedrigstwertige Byte.

Bei nullterminierten Texten endet der Eintrag mit der ersten "0". Spätestens der letzte Wert muss eine "0" sein, d. h. für den Eintrag steht ein Byte weniger zur Verfügung. Alle null-terminierten Texte werden im ASCII-Code ausgegeben.

10.5.1 Kontinuierliche Distanzmessung

Dieses Datenformat sollte in Prozessen verwendet werden, bei denen kein Encoder benötigt wird. Es erfolgt eine lückenlose Datenübertragung aller gemessenen Distanzwerte.

Benennung	Offset [Byte]	Länge [Byte]	Тур	Ausgabe/Bemerkung
Datenformat	0	4	unsigned int	17520
Intern	4	24		
Bestellnummer (null-terminiert)	28	12	string	PNBC002*
Seriennummer (null-terminiert)	40	12	string	001000*
SW-Version (null-terminiert)	52	10	string	V2.11*
Betriebszeitzähler in ms	62	4	unsigned int	1467*
Messbereichsbeginn in mm	66	2	unsigned short	25*
Messbereich in mm	68	2	unsigned short	10*
Laserleistung in 0,1 mW	70	2	unsigned short	110
Messrate in Hz	72	2	unsigned short	90030000
Temperatur im Sensor in °C	74	1	unsigned char	35*
Auswerteverfahren	75	1	unsigned char	2, 5
Regelung Laserleistung/Messrate	76	1	unsigned char	03
EncRightShift	77	1	unsigned char	08
Status (siehe Kapitel 10.5.4)	78	1	unsigned char	0255
Intern	79	8		
Zustand E/Ax, Laser (siehe Kapi- tel 10.5.4)	87	1	unsigned char	0255
Ausgaberate in Hz	88	2	unsigned short	1030000
Mittelwertfilter	90	2	unsigned short	01000
Offset	92	2	signed short	-30000+30000
Anzahl Distanzwerte pro Paket	94	2	unsigned short	1450
Distanz 1 (siehe Kapitel 10.5.4) Distanz 2	96 98	2		065535
Distanz 450	994			

*) Beispiel-Werte

10.5.2 Erweiterte kontinuierliche Messung (Distanz, Intensität, Encoder)

Dieses Datenformat sollte gewählt werden, wenn ein Encoder in der Anwendung verwendet wird. Zusätzlich zu den Distanzwerten werden hier die Intensität und der Encoderwert (Encoder-Zähler im PNBC) jeder einzelnen Messung übertragen. Somit ist es möglich, einen Positions-Istwert zeitlich synchron zu den Abstandswerten zu erhalten.

Benennung	Offset [Byte]	Länge [Byte]	Тур	Ausgabe/Bemerkung
Datenformat	0	4	unsigned int	17536
Intern	4	24		
Bestellnummer (null-terminiert)	28	12	string	PNBC002*
Seriennummer (null-terminiert)	40	12	string	001000*
SW-Version (null-terminiert)	52	10	string	V2.11*
Betriebszeitzähler in ms	62	4	unsigned int	1467*
Messbereichsbeginn in mm	66	2	unsigned short	25*
Messbereich in mm	68	2	unsigned short	10*
Laserleistung in 0,1 mW	70	2	unsigned short	110
Messrate in Hz	72	2	unsigned short	90030000
Temperatur im Sensor in °C	74	1	unsigned char	35*
Auswerteverfahren	75	1	unsigned char	2, 5
Regelung Laserleistung/Messrate	76	1	unsigned char	03
EncRightShift	77	1	unsigned char	08
Status (siehe Kapitel 10.5.4)	78	1	unsigned char	0255
Intern	79	8		
Zustand E/Ax, Laser (siehe Kapi- tel 10.5.4)	87	1	unsigned char	0255
Ausgaberate in Hz	88	2	unsigned short	1030000
Mittelwertfilter	90	2	unsigned short	01000
Offset	92	2	signed short	-30000+30000
Anzahl Distanz-, Intensitäts- und Encoderwerte pro Paket	94	2	unsigned short	1150
Distanz 1 (siehe Kapitel 10.5.4) Intensität 1 (siehe Kapitel 10.5.4) Encoder 1 (siehe Kapitel 10.5.4) Distanz 150 Intensität 150 Encoder 150	96 98 100 : : 990 992 994	6	unsigned short	065 535 04 095 065 535

*) Beispiel-Werte

10.5.3 Peak-Daten

Dieses Datenformat eignet sich für Diagnosezwecke.

Es werden alle 1024 Pixel-Intensitäten der CMOS-Zeile des Sensors übertragen.

Nach einem Neustart bleibt dieses Datenformat nicht erhalten, sondern es wird automatisch auf das zuvor gewählte Format zurückgestellt.

Benennung	Offset [Byte]	Länge [Byte]	Тур	Ausgabe/Bemerkung
Datenformat	0	4	unsigned int	17488
Intern	4	24		
Bestellnummer (null-terminiert)	28	12	string	PNBC002*
Seriennummer (null-terminiert)	40	12	string	001000*
SW-Version (null-terminiert)	52	10	string	V2.11*
Betriebszeitzähler in ms	62	4	unsigned int	1467*
Messbereichsbeginn in mm	66	2	unsigned short	25*
Messbereich in mm	68	2	unsigned short	10*
Laserleistung in 0,1 mW	70	2	unsigned short	110
Messrate in Hz	72	2	unsigned short	90030000
Temperatur im Sensor in °C	74	1	unsigned char	35*
Auswerteverfahren	75	1	unsigned char	2, 5
Regelung Laserleistung/Messrate	76	1	unsigned char	03
EncRightShift	77	1	unsigned char	08
Status (siehe Kapitel 10.5.4)	78	1	unsigned char	0255
Intern	79	8		
Zustand E/Ax, Laser (siehe Kapi- tel 10.5.4)	87	1	unsigned char	0255
Distanz in Digits	88	2	unsigned short	065535
Intensität in Digits	90	2	unsigned short	04095
Encoderwert in Digits	92	2	unsigned short	065535
Anzahl Intensitätswerte pro Paket	94	2	unsigned short	1024
Intensität Pixel 1 Intensität Pixel 2 Intensität Pixel 1024	96 98 : : 2142	2	unsigned short	04095

*) Beispiel-Werte

10.5.4 Beschreibung der Messdaten

Status:

ļ	Der Sta	atus wii	rd als 7	-Bit-We	ert darg	estellt:		
	7	6	5	4	3	2	1	0

Bit 0: Out-of-Range-Error: Intensität oder Distanz ist außerhalb des gültigen Arbeitsbereichs

Bit 1: Interner Peakspeicher-Überlauf-Fehler

Bit 2: Sensor-FIFO-Overflow: CPU kommt mit der Verarbeitung der Messdaten nicht nach Bit 3...7: = 0

Zustand E/Ax, Laser:

Der Zustand der Ein-/Ausgänge und des Lasers wird als 7-Bit-Wert dargestellt:

-	-	-			-		-
/	6	5	4	3	2	1	0
Bit 0:	Zus	tand E	/A1				
D:4 4 .	7		/10				
BIT I:	Zus	tand E	AZ				
Bit 2:	Zus	tand E	/A3				
Bit 3:	Zus	tand E	/A4				

Bit 7: Zustand Laser: 1 = On; 0 = Off

Distanz in Bit:

Die Distanz wird als 16-Bit-Wert dargestellt:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit 0...15: Distanzmesswert (0...65535)

Um auf den in der Website angezeigten Wert zu kommen, gilt folgende Formel:

Messwert in mm = (Distanz in Bit × Sensor-Messbereich in mm / 65536) + Arbeitsbereichsbeginn in mm

Beispiel (PNBC005): Messwert = 35721 × 100 mm / 65536 + 90 mm = 144,5 mm

Intensitätswert:

Der Intensitätswert wird als 16-Bit-Wert dargestellt:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

Bit 0...11: Intensitätswert (=Peakhöhe; 0...4095)

- Bit 12: Reserviert (=0)
- Bit 13: Reserviert (=0)
- Bit 14: Errorbit: Intensität zu klein oder zu groß
- Bit 15: Errorbit: Distanz außerhalb des Arbeitsbereichs

Um die auf der Webseite angezeigte Signalstärke zu berechnen, gilt folgende Formel zur Umrechnung des digitalen Werts in einen Prozentwert.

Signalstärke in % = Intensitätswert/16

Bei Intensitätswerten über 1600 wird die Signalstärke auf 100% begrenzt

Encoderwert:

Der Encoderwert wird als 16-Bit-Wert dargestellt:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit 0...15: Encoderwert (0...65535)

Eine Umrechnung in mm kann nicht angegeben werden, da diese vom verwendeten Encoder und vom Einbau abhängig ist.

11. Wartungshinweise

- · Dieser wenglor-Sensor ist wartungsfrei
- Eine regelmäßige Reinigung der Linse und des Displays sowie eine Überprüfung der Steckerverbindungen werden empfohlen
- Verwenden Sie zur Reinigung des Sensors keine Lösungsmittel oder Reiniger, die das Gerät beschädigen könnten

12. Umweltgerechte Entsorgung

Die wenglor sensoric GmbH nimmt unbrauchbare oder irreparable Produkte nicht zurück. Bei der Entsorgung der Produkte gelten die jeweils gültigen länderspezifischen Vorschriften zur Abfallentsorgung.

13. EU-Konformitätserklärung

Die EU-Konformitätserklärung finden Sie unter www.wenglor.com im Download-Bereich des Produktes.